Dopamine Regulation of GABAA Receptors Contributes to Light/Dark Modulation of the ON-Cone Bipolar Cell Receptive Field Surround in the Retina.
نویسندگان
چکیده
Cone bipolar cells are interneurons that receive synaptic input from cone photoreceptor cells and provide the output of the first synaptic layer of the retina. These cells exhibit center-surround receptive fields, a prototype of lateral inhibition between neighboring sensory cells in which stimulation of the receptive field center excites the cell whereas stimulation of the surrounding region laterally inhibits the cell. This fundamental sensory coding mechanism facilitates spatial discrimination and detection of stimulus edges. However, although it is well established that the receptive field surround is strongest when ambient or background illumination is most intense, e.g., at midday, and that the surround is minimal following maintained darkness, the synaptic mechanisms that produce and modulate the surround have not been resolved. Using electrical recording of bipolar cells under experimental conditions in which the cells exhibited surround light responses, and light and electron microscopic immunocytochemistry, we show in the rabbit retina that bright-light-induced activation of dopamine D1 receptors located on ON-center cone bipolar cell dendrites increases the expression and activity of GABAA receptors on the dendrites of the cells and that surround light responses depend on endogenous GABAA receptor activation. We also show that maintained darkness and D1 receptor blockade following maintained illumination and D1 receptor activation result in minimal GABAA receptor expression and activity and greatly diminished surrounds. Modulation of the D1/GABAA receptor signaling pathway of ON-cBC dendrites by the ambient light level facilitates detection of spatial details on bright days and large dim objects on moonless nights.
منابع مشابه
Parallel ON and OFF cone bipolar inputs establish spatially coextensive receptive field structure of blue-yellow ganglion cells in primate retina.
In the primate retina the small bistratified, "blue-yellow" color-opponent ganglion cell receives parallel ON-depolarizing and OFF-hyperpolarizing inputs from short (S)-wavelength sensitive and combined long (L)- and middle (M)-wavelength sensitive cone photoreceptors, respectively. However, the synaptic pathways that create S versus LM cone-opponent receptive field structure remain controversi...
متن کاملCenter surround receptive field structure of cone bipolar cells in primate retina
In non-mammalian vertebrates, retinal bipolar cells show center-surround receptive field organization. In mammals, recordings from bipolar cells are rare and have not revealed a clear surround. Here we report center-surround receptive fields of identified cone bipolar cells in the macaque monkey retina. In the peripheral retina, cone bipolar cell nuclei were labeled in vitro with diamidino-phen...
متن کاملSynaptic inputs to the ganglion cells in the tiger salamander retina
The postsynaptic potentials (PSPs) that form the ganglion cell light response were isolated by polarizing the cell membrane with extrinsic currents while stimulating at either the center or surround of the cell's receptive field. The time-course and receptive field properties of the PSPs were correlated with those of the bipolar and amacrine cells. The tiger salamander retina contains four main...
متن کاملReceptive field properties of rod-driven horizontal cells in the skate retina
The large receptive fields of retinal horizontal cells result primarily from extensive intercellular coupling via gap (electrical) junctions; thus, the extent of the receptive field provides an index of the degree to which the cells are electrically coupled. For rod-driven horizontal cells in the dark-adapted skate retina, a space constant of 1.18 +/- 0.15 mm (SD) was obtained from measurements...
متن کاملRetinal morphology and retinomotor response in Caspian kutum (Rutilus frisii subsp. kutum)
In this study, the morphology and organization of the retina of Caspian kutum and fish response to ambient light as retinomotor reaction was investigated. The Rutilus frisii subsp. kutum is an anadromous fish and important native fish specimen of Caspian Sea. The specimens were obtained from Shahid Ansari Teleost Reproduction and Culture center (Guilan province, Iran). For light and dark adapta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current biology : CB
دوره 27 17 شماره
صفحات -
تاریخ انتشار 2017